Nafith Abu Tarboush
DDS, MSc, PhD
nafeztarboush@yahoo.com
www.facebook.com/natarboush

AMINO ACID METABOLISM

IMPORTANT COENZYMES

- **Pyridoxal phosphate** (PLP, B₆), transamination and certain carbon skeleton catabolism
- Tetrahydrofolate (FH4), folic acid, one-carbon transfer regardless of the oxidation state, degradation and synthesis pathways
- **Tetrahydrobiopterin** (BH4), required for ring hydroxylation reactions (e.g., phenylalanine to tyrosine), utilize molecular O₂

SYNTHESIS OF AMINO ACIDS

- x 11 non-essential, 9 essential
- 9/11 can be produced from glucose plus a source of nitrogen
- 2/11 (tyrosine and cysteine [S only]), require essential for synthesis

Essential	Conditionally Non-Essential	Non-Essential
Histidine	Arginine	Alanine
Isoleucine	Asparagine	Asparatate
Leucine	Glutamine	Cysteine
Methionine	Glycine	Glutamate
Phenylalanine	Proline	,
Threonine	Serine	
Tryptophan	Tyrosine	
Valine		
Lysine		

- x 10/11 (glucose derived); 4/10 (serine, glycine, cysteine, and alanine) are produced from intermediates of glycolysis; 6/10 are produced from TCA cycle intermediates
- * 4/6 (glutamate, glutamine, proline, and arginine) have α-Ketoglutarate as the precursor; 2/6 (aspartate and asparagine) have oxaloacetate as the precursor

DEGRADATION OF AMINO ACIDS

- Generally, pathways are distinct from biosynthesis (regulation)
- Almost every amino acid will have a degradative pathway that can generate
 NADH
- The fate of the carbons depends on the physiologic state of the individual (fed vs. fasting)

- The liver is the only tissue that has all of the pathways of amino acid synthesis and degradation
- Degradation classify amino acids to glucogenic, ketogenic, or both
- × Carbons are degraded and converted to (a) CO_2 , (b) glucose (puruvate and TCA intermediates $-\alpha$ -SCoA-F-O) and (c) ketone bodies precursors (acetoacetate and acetyl CoA)

DEGRADATION OF AMINO ACIDS

- Breakdown of the carbon skeletons converge to form seven intermediate products:
 - Oxaloacetate
 - α-ketoglutarate
 - Pyruvate
 - Fumarate
 - succinyl coenzyme A (CoA)
 - + Acetyl CoA
 - + Acetoacetate
- These products result either in:
 - Synthesis of glucose
 - Synthesis of lipid
 - Production of energy (CO₂ & H₂O) by TCA cycle

A. AMINO ACIDS THAT FORM OXALOACETATE

x Aspartate

 Is produced by transamination of oxaloacetate (reversible)

x Asparagine

- + Is formed from aspartate (glutamine provides the nitrogen); different from glutamine
- + Degraded by asparginase to give NH₄⁺ and aspartate; similar to glutaminase
- Asparagine is essential amino acid for some rapidly dividing leukemic cells (Asparaginase can be administered systemically to treat leukemic patients)

B. α-KETOGLUTARATE RELATED

× 1. GLUTAMATE

- Transamination or by the glutamate dehydrogenase (reversible)
- + Used for the synthesis of other amino acids (glutamine, proline, ornithine, and arginine)
- Used for the synthesis of Glutathione; an important antioxidant

2. GLUTAMINE

- Glutamine synthetase
- + 3 human enzymes fixes free ammonia (glutamate DH & CPSI)
- + Reconverted to glutamate by a different enzyme, glutaminase

B. α-KETOGLUTARATE RELATED

× 3. PROLINE

- Glutamate converted to an aldehyde, spontaneously cyclizes followed by reduction to proline
- + Proline can be converted back to glutamate

× 4. ARGININE

- Cleaved by arginase to form urea & ornithine
- + If ornithine is in excess, transaminated to α-ketoglutarate followed by another transamination to glutamate

B. α-KETOGLUTARATE RELATED

× 5. HISTIDINE

- + Essential, however, 5 carbons come from glutamate
- + In a series of steps, histidine is converted to N-Formiminoglutamate (FIGLU). The subsequent reactions transfer one carbon of FIGLU to the FH_4 pool and release NH_4 ⁺ and glutamate
- The FIGIu excretion test has been used in diagnosing a deficiency of folic acid

tetrahydrofolate

C. PYRUVATE RELATED

- 1. Alanine: transamination (ALT)
- × 2. Serine:
 - + To glycine & N5,N10-methylenetetrahydrofolate
 - + To pyruvate by serine dehydratase
- × 3. Glycine:
 - + To serine
 - Oxidized to CO₂ and NH₃

C. PYRUVATE RELATED

- 4. Cystine & Cysteine:
- Cystine reduced to cysteine (NADH)
- C&N from serine, S from methionine
- Feedback inhibition through cysteine
- Cysteine essentiality is governed by methionine
- Excess cysteine in diet spares
 methionine
- This is the only degradative route for homocysteine
- Requires PLP
- <u>liver desulfurase</u> produces hydrogen sulfide (H₂S) & pyruvate

C. PYRUVATE RELATED

× 5. THREONINE

- + Converted to pyruvate or to αketobutyrate
- + Degraded by threonine dehydratase (PLP) to ammonia and α-ketobutyrate, which subsequently undergoes oxidative decarboxylation to form propionyl CoA (succinyl CoA)

threonine --> alpha ketobutyrate + NH4+

D. AMINO ACIDS THAT FORM FUMARATE

1. ASPARTATE

- + Urea cycle
- Fumarate to malate; anaplerotic or oxidative purposes

2. PHENYLALANINE & TYROSINE

- + Tyrosine, hydroxylated or diet, is oxidized to form acetoacetate and fumarate
- + Diseases

- The essential amino acids methionine, valine, isoleucine, & threonine are degraded to form propionyl-CoA
- The conversion of propionyl CoA to succinyl CoA is common to their degradative pathways
- Propionyl CoA is carboxylated (requires biotin) then converted to succinyl CoA (requires vitamin B₁₂)

x 1. METHIONINE

- + Methionine → SAM → Sadenosylhomocysteine (SAH).
- + SAH → homocysteine → cyseine (PLP)
- + Methionine can be regenerated from homocysteine (FH4 & vitamin B₁₂)

1. METHIONINE

RELATIONSHIP OF HOMOCYSTEINE TO VASCULAR DISEASE

- Elevations in plasma homocysteine levels promote:
 - Oxidative damage
 - + Inflammation
 - + Endothelial dysfunction

- Mild elevations are seen in $\approx 7\%$ of the population
- Plasma homocysteine levels are inversely related to (folate, B_{12} , & B_{6})

Homocysteine

600

500-

- Vitamins are involved in conversion of homocysteine to methionine or cysteine
- Supplementation reduce circulating levels of homocysteine; however, no proof to result in reduced cardiovascular morbidity and mortality (a cause or a marker)

× 2. VALINE & ISOLEUCINE

- + Branched-chain amino acids (V, I, L)
- + Almost <u>25% of the content of the</u> average protein (energy)
- Highest degradation activity is in muscle (energy)
- Degradative pathway functions: energy generation & anaplerotic
- + Starts with <u>branched-chain α-amino</u>

 <u>acid aminotransferase</u> (PLP), followed by oxidative decarboxylation
 (α-keto acid dehydrogenase) (TPP, Lipoate, FAD)
- + NADH & FADH₂ are generated (energy)
- + Isoleucine also forms, in addition, acetyl CoA
- Leucine, does not produce succinyl CoA (acetoacetate and acetyl CoA), strictly ketogenic

F. AMINO ACIDS THAT FORM ACETYL COA & ACETOACETATE (KETOGENIC)

- Leucine and lysine produce acetyl CoA and acetoacetate, therefore strictly ketogenic
- Others are ketogenic and glucogenic
- × A. Tryptophan
 - Non-ring carbons oxidized to form alanine
 - Ring carbon oxidized to acetyl CoA
 - + NAD⁺ & NADP⁺ can be produced from the ring structure of tryptophan (niacin requirements)

F. AMINO ACIDS THAT FORM ACETYL COA & ACETOACETATE

- B. Phenylalanine and Tyrosine
 - + Phenylalanine hydroxylase (PAH)
 - + Requires molecular O₂ and BH₄
 - Tyrosine undergoes oxidative degradation
 - + Eventually forms <u>fumarate &</u> <u>acetoacetate</u>
 - + Deficiencies of different enzymes result in phenylketonuria, tyrosinemia, and alcaptonuria

F. AMINO ACIDS THAT FORM ACETYL COA & ACETOACETATE

- × C. Isoleucine, Leucine, & Lysine
 - + Leucine and Isoleucine, as previously
 - + Leucine produces hydroxymethylglutaryl CoA (HMGCoA), which is cleaved to form acetyl CoA and acetoacetate
 - + Lysine is purely ketogenic (acetyl CoA)
 - During the degradation pathway NADH
 & FADH₂ are generated for energy

BIOSYNTHESIS OF NONESSENTIAL AMINO ACIDS

- Synthesized from intermediates of metabolism or, as in the case of tyrosine & cysteine
- A. Synthesis from α-keto acids: Alanine, aspartate, and glutamate
- B. Synthesis by amidation: Glutamine & Asparagine
- C. Proline: Glutamate converted to proline by cyclization & reduction rxns
- D. Serine, glycine, & cysteine:
 - Serine: from glycine (serine hydroxymethyl transferase)
 - Glycine: from serine (serine hydroxymethyl transferase)
 - + Cysteine: from homocysteine & serine
- E. Tyrosine: from phenylalanine

METABOLIC DEFECTS IN AMINO ACID METABOLISM

- Commonly caused by mutant genes
- The inherited defects may be total or, mostly, partial deficiency in catalytic activity
- Without treatment, result in mental retardation or other developmental abnormalities
- More than 50 have been described, many are rare
- Phenylketonuria is relatively common

PHENYLKETONURIA (PKU)

- Deficiency of phenylalanine hydroxylase, most common clinically encountered inborn error of amino acid metabolism
- Characterized by accumulation of phenylalanine & a deficiency of tyrosine
- Restricting dietary phenylalanine does not reverse the CNS effects (deficiencies in neurotransmitters)
- Replacement therapy improves the clinical outcome

PHENYLKETONURIA (PKU)

Characteristics of PKU:

- + Elevated metabolites: musty ("mousey") odor
- + CNS symptoms:
 Mental retardation,
 failure to walk or talk,
 seizures,, and
 failure to grow

- + Untreated PKU typically shows symptoms of mental retardation by year 1 (neonatal screening, 24 to 48 hours of protein feeding)
- + <u>Hypopigmentation</u>: fair hair, light skin color, and blue eyes. The <u>hydroxylation of tyrosine by tyrosinase</u>, is the first step in the formation of the pigment melanin. <u>It is competitively inhibited by the high levels of phenylalanine</u>

MAPLE SYRUP URINE DISEASE

- * Rare (1:185,000), autosomal recessive disorder
- × Partial/complete deficiency (branched-chain α-keto acid dehydrogenase)
- These amino acids and their corresponding α-keto acids accumulate in the blood, causing a toxic effect that interferes with brain functions
- The disease is characterized by feeding problems, vomiting, dehydration, severe metabolic acidosis, & a characteristic maple syrup odor to the urine
- If untreated, leads to mental retardation, physical disabilities, & even death
- Screening/diagnosis are available
- Treatment: synthetic formula limited amounts of leucine, isoleucine, and valine — sufficient

HOMOCYSTINURIA

- A group of disorders involving defects in the metabolism of homocysteine
- Inherited as autosomal recessive illnesses
- Characterized by high plasma and urinary levels of homocysteine & methionine & low levels of cysteine
- The most common cause of homocystinuria is a defect in the enzyme cystathionine β-synthase, which converts homocysteine to cystathionine
- \mathbf{x} Patients can be responsive or nonresponsive to oral pyridoxine (B₆)—a coenzyme of cystathionine β-synthase
- Responsive patients usually have a milder and later onset of clinical symptoms
- ***** Treatment: restriction of methionine intake & supplementation with vitamins B_6 , B_{12} , & folate

ALBINISM

- Refers to a group of conditions in which a defect in tyrosine metabolism results in a partial or full deficiency in the production of melanin
- Inherited by several modes: autosomal recessive, autosomal dominant, or X-linked
- Complete albinism rare (the most severe form of the condition) results from a <u>complete deficiency of tyrosinase activity</u>, causing a total absence of pigment from the hair, eyes, and skin

In addition: vision defects and photophobia and higher risk for skin

cancer

ALKAPTONURIA

- A rare metabolic disease
- ★ A deficiency in homogentisic acid oxidase → accumulation of homogentisic acid (degradative pathway of tyrosine)
- Three characteristic symptoms:

+ Homogentisic aciduria (elevated levels of homogentisic acid, which is

oxidized to a dark pigment)

- + Large joint arthritis
- Black ochronotic pigmentation of cartilage & collagenous tissue
- Patients asymptomatic until about age 40
- Diets low in protein— especially Phe & Tyr
- Although alkaptonuria is not lifethreatening, the associated arthritis may be severely crippling

