Casting alloys II

Mohammad AL-Rabab'ah

Aims &Objectives

- Classification of casting alloys
- Elements roles
- Clinical considerations

Descriptive Classification

- Normal-fusing alloys
 - Medium-gold
 - Low-gold
 - Silver-palladiumSilver-indium
- High-fusing alloys (mostly for PFM)
 Gold-platinum-palladium

 - Gold-palladium-silver
 - $\bullet \ \ Gold-palladium$
 - High-palladium • Palladium-silver

 - Base-metal
 - Cr/Co; Cr/Ni

Noble alloys

- Gold (Au)
- Platinum (Pt)
- · Palladium (Pd)
- Silver (Ag)

Gold (Au)

- Soft, (most) malleable and ductile
- Relatively low strength
- Tarnish resistant in air and water at any temp.
- Insoluble in sulfuric, nitric, or hydrochloric acids
- Soluble in a combination of nitric and sulfuric acids
- impurities (ie. lead, mercury, base metals) have usually detrimental effect on its properties.

Platinum (Pt)

- Tough, malleable and ductile
- Very high cost
- High corrosion resistance
- Higher melting temp than porcelain

6

Palladium (Pd)

- Not used in the pure state dentistry
- Has replaced Pt in dental casting alloys
- Helps prevent corrosion of silver in the oral environment
- Absorbs H₂ gas when heated improperly

Silver (Ag)

- "Noble?"
- Malleable and ductile
- Harder than gold
- Unaltered in clean dry air, however, combined with sulfur, chlorine and phosphorus can cause severe tarnish.
- Contains large quantities of O₂ in molten state

Minor Alloying Elements

- $\bullet \ Iridium_{\,(}Ir_{\,)\,-}\,grain\,refining$
- Ruthenium (Ru) grain refining

• Grain refining

- The addition of as little as 50 ppm (0.005%) of Ir and Ru results in a 100x increase in the no. of grains per unit volume.
- Increases the alloy's tensile strength and % elongation by >30%
- Increases tarnish resistance, slightly increases yield strength
- No appreciable effect on hardness

Au-Ag-Cu-Pd Alloys

- Primarily ternary alloys of Au, Ag and Cu, with minor amounts of Pt, Pd and Zn.
- \bullet Approx. >90% of the total alloy content is Au, Ag and Pd

Au-Ag-Cu-Pd: Composition

- Gold (Au)
 - Tarnish and corrosion resistance
 - Tarnish is an inverse function of gold content.
 - Contributes burnishability, ductility
- Silver (Ag)
 - Helps control the color of the alloy, neutralizing the red color imparted by Cu
 - Promotes ductility
 - Au/Cu alloys (75% Au) break apart at grain boundaries during heat treatment if no Ag is present.

Au-Ag-Cu-Pd: Composition

- Platinum (Pt)
 - Very expensive ingredient
 - Contributes strength
 - Whitens the alloy
 - Increases the fusion temperature
- Palladium (Pd)
 - Like Pt but more effective and less expensive than Pt
 - → Alloying metal of choice v.s. Pt

13

Au-Ag-Cu-Pd: Composition

- Copper (Cu)
 - Principle hardener in gold alloys
 - Conc. >12% of Au amount \rightarrow alloy can be heat treated
 - Conc. >18% \rightarrow decrease the melting temp of the alloy

14

Au-Ag-Cu-Pd: Composition

- Copper (Cu)
 - When alloyed with Ag, Cu increases the alloy's hardness and decreases melting temp.
 - Cu imparts a reddish color to the metal and contributes most to the corrosion of gold alloys.
 - Ag/Cu ratio is important to tarnish resistance (but not as important as the Ag/Pd ratio).
 - Cu is not found in PFM alloys due to its tendency to discolor the porcelain.

15

Au-Ag-Cu-Pd: Composition

- Zinc (Zn)
 - O₂ scavenger
 - 1-2% helps to counteract the absorption of O₂ by silver.
- Increases the castability, decreases porosities, and increases the hardness and brittleness of the alloy
- Indium (In), Tin (Sn), Iron (Fe)
 - Hardens the alloy
 - (Provides oxides for ceramic bonding in PFM alloys)

Au-Ag-Cu-Pd: Composition

- Iridium (Ir), Ruthenium (Ru), Rhenium (Rh)
 - Grain refining
- Gallium (Ga)
 - Added to high Pd alloys or non-silver Au/Pd metal ceramic alloys to compensate for a decrease in the TCOE caused by the elimination of the Ag.
 - (Also provides oxides for ceramic bonding)

Alloys for Ceramo metal restorations

Silver-Palladium Alloys (Ag-Pd)

- Ag:Pd ratio approx 3:1 (60-70% Ag, 25% Pd) to render silver tarnish resistant in the oral cavity.
- Both Ag and Pd absorb gases during heating, casting is very technique sensitive.
- # Pd-Ag alloys (for PFM restorations)

Alloy Main Elements Cu/Au Cu Ag Pd Sn, In, Fe, Zn, Ga

III Noble (Ag base) 70 25 Balance

IV Noble (Ag base) 15 14 45 25 Balance

some important Requirements

- Must have the potential to bond to dental porcelain
 need oxide_forming elements (small amount of base metals)
- · Posses coefficient of
- Posses coefficient of thermal contraction compatible with those of dental porcelains
 Sufficiently high solidus temp (fusing temp) to permit the application of low-fusing porcelains
 >100°C than the firing temp of the ceramic

Ceramic-Metal Bond

Gold-Platinum-Palladium Alloys (Au-Pt-Pd)

- Composition
 - Au (84–86%); Pt (4–10%); Pd (5–7%); Ag (0–5%); Fe, In, Sn (2–3%)
 - (high noble)
- Advantages
 - Excellent bonding to porcelain
 - Reproduces fine margins and occlusal detail
 - Easily finished and polished
 - $\bullet \;$ Corrosion resistant and non-toxic
 - Adequate yield strength and $\mathsf{MOE}_{\,(}\,\mathsf{most}\,\mathsf{cases}_{\,)}$

• Disadvantages

- low creep resistance
- not strong enough for long span FPDs
- High cost

Gold-Palladium-Silver Alloys (Au-Pd-Ag)

- Composition
 - Au (45–52%); Pd (26–31%); Ag (6–16%); In, Sn (5–7%)
 - (high noble)
- Advantages
 - Higher melting rangeBetter creep resistance

 - Higher yield strength for long span FPDs
 - Good castability
 - Easily finished and polished
 - $\bullet \;\; Non_toxic \; and \; lower \; cost \; v. \, s. \; Au_Pt_Pd \; alloys$

• Disadvantages

- Ag may cause greening of porcelain.
- White color may show through tissues as gray and may not be as acceptable as gold collars.
- ullet High Pd content may increase the risk of H_2 gas absorption during casting, and bonding of porcelain may be affected by oxidizing procedures.

Gold-Palladium Alloys (Au-Pd)

- Composition
 - $\bullet \; Au\, (45-52\%); Pd\, (38-45\%); In\, (8.5\%); Ga\, (1.5\%)$
 - (high noble)
- Advantages
 - same as for Au_Pd_Ag alloys with the addition of potentially better porcelain color due to lack of Ag
- Disadvantages
 - same as for Au_Pd_Ag alloys

Palladium-Silver Alloys (Pd-Ag)

- Composition
- $Pd_{(53-88\%)}$; Ag (30-37%); In (4-7%); Sn (4-7%)
- (noble)
- Advantages
 - High yield strength
 - Better creep resistance
- Non_toxic and low cost • Disadvantages
- Castability < gold alloys
- High Ag → porcelain greening, ↓ bonding
- High Pd → †gas absorption and poor color

High Palladium Alloys

- Composition
 - Pd $_{(}$ 74–88%); Cu $_{(}$ 10–15%); Ga $_{(}$ 9%); Au $_{(}$ 0–2%); Co $_{(}$ 4–5%); In $_{(}$ 0–5%)
 - (noble)
- Advantages
 - High yield strength and sag and creep resistance
 - Non-toxic, low cost
 - Castability = gold alloys (easy)
 - Excellent porcelain color

29

- Disadvantages
 - Porcelain bond strength may be variable.
 - High Pd content → ↑ H₂ gas absoption, poor solderability
 - Can't be used with carbon investments or crucibles
 - Carbon or Silicon contamination will cause brittle castings which may crack or tear at grain boundaries under stress.

30

Palladium in PFM Alloys

- Hardens the alloy
- Whitens the alloy
- Increases the alloy's casting temp.
- Renders silver tarnish resistant
- Decreases the alloy's density
- Decreases the alloy's thermal coef. of exp.

Minor Elements in PFM Alloys

- In, Sn, Fe, Ga provide metallic oxides for porcelain bonding, and harden the alloy.
- Ga increases the thermal coef. of exp. to compensate for decreased or absence of Ag.

Heat Treatment

 PFM alloys can be heat tx however clinical condition is dependant on ceramic application. 13

Composition

- Chromium (11–20%)
 - responsible for tarnish and corrosion resistance due to its passivity → "passivation"
 - if $>30\% \rightarrow$ difficult to cast and brittle
- Cobalt or Nickel (65-78%)
 - Co and Ni are pretty much interchangeable.
 - Ni alloys have decreased strength, hardness, fusion temps and increased ductility and %elongation v. s. Co alloys.

Composition

- Minor alloying elements
 - control the majority of the physical properties
 - Carbon (0.1-0.5%)
 - increases strength, hardness, and brittleness.
 - increased by 0.2% → alloy too hard and brittle for dental use
 - decreased by 0.2% → decreases yield strength and UTS to unacceptable levels.
 - Molybdenum (3–6%)
 - increases strength, hardness, and %elongation

Composition

- Aluminum (4-5%)
 forms a Ni₃Al in NiCr alloys which contributes to precipitation hardening resulting in increased tensile and yield strength.
- Beryllium (0.5-2%)
 - decreases the fusion temp by approx 100°C
- increases fluidity during casting
 allows for electrolytic etching (with resin bond prosthesis)

Composition

- Manganese (5%) and Silicone (0.5%)
 increases fluidity and castability of the molten alloy
- + Boron → deoxidizers (essential in Ni containing alloys)
- Iron and Copper
 - increase hardness

Titanium & Titanium alloys

- What for
- Mostly used alloy
- Advantages and disadvantages

Thank you