Cleaning and Shaping of the Root Canal System (I)

Dr. Muna Al-Ali

DClinDent (Uni Melb), MFDS (RCSI), BDS (UJ)
munaendodontics@gmail.com

- Terms:
- Root Canal Debridement: removal of <u>devitalized</u>
 tissue or its remnants and bacteria from the root
 canal by chemical and/or mechanical means (also
 =cleaning)
- Root Canal Shaping: creation of a certain canal shape that facilitates its cleaning and filling while adhering to specific criteria.

- Root canal preparation consists of two interdependent components
 - Chemical component= irrigants and root canal medicaments
 - Mechanical component= instrumentation and its techniques

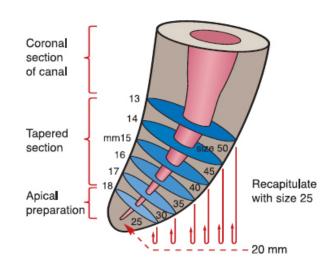
Objectives of Root Canal Preparation

Biological Objectives

Technical Objectives

Biologic Objectives:

- Eliminate (Significantly Reduce) microorganisms from the root canal system,
- Remove pulp tissue or its remnants that may support microbial growth,
- Avoid forcing debris beyond the Apical Foramen.

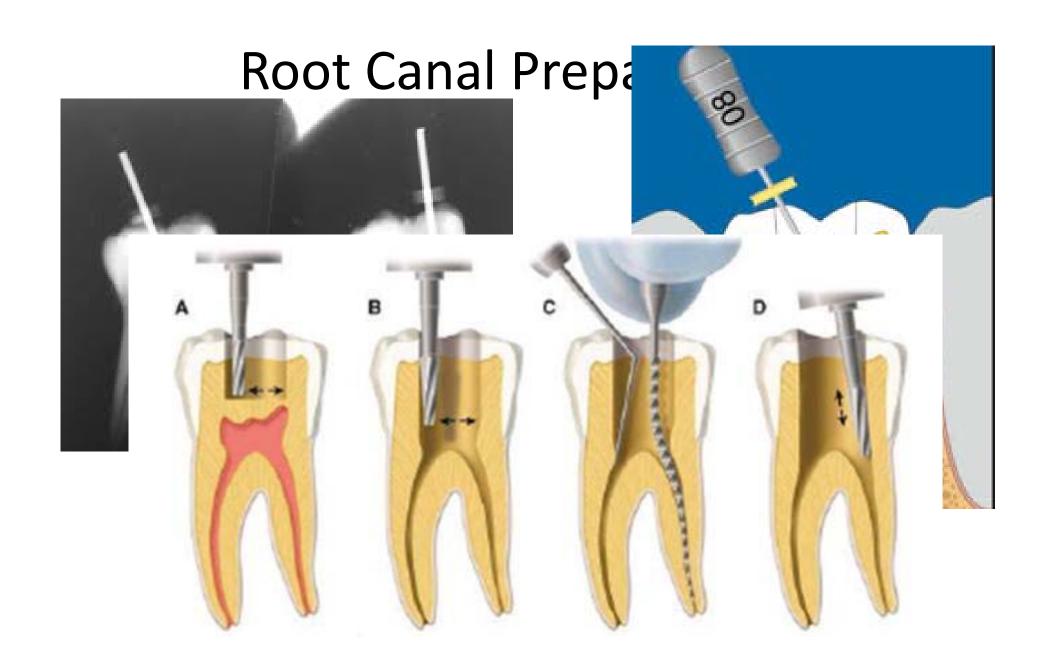

Technical Objectives:

 are directed toward shaping the canal so as to achieve the biological objectives and to facilitate placement of a high quality root filling.

Schilder's mechanical Objectives

*should be followed in line with achieving the biological objectives.

- 1) Continuously tapering funnel preparation from the access cavity to apical foramen
- The root canal preparation should maintain the path of the original canal
- 3) Have the conical canal preparation exist in multiple planes (concept of flow).
- 4) The apical foramen should remain in its original position
- 5) The apical opening should be kept as small as practical



 The shape of the access cavity is a prerequisite that must be optimized before any canal preparation

 A straight-line access should be obtained to the middle third of the canal, or the first/most coronal root curvature.

Instrumentation Techniques

Manual Preparation Techniques

Rotary Preparation Techniques

Manual Preparation Techniques

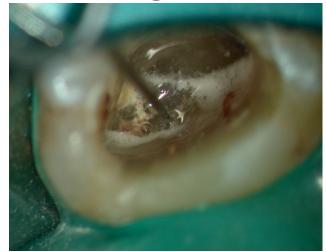
- Standardized technique
- Step Back technique
- Step-down Technique
- Balanced force technique
- Anti-curvature technique/concept
- Hybrid Techniques

Steps in root canal preparation

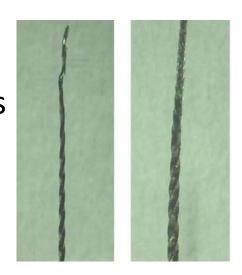
after the straight line access is achieved

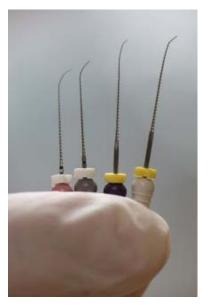
Armamentarium

- Basic examination set (mirror, explorer, cotton pliers, etc.).
- Complete selection of files size 10-80 k flex with fitted rubber stoppers (NiTi K files- >ISO # 25)
- Barbed broaches.
- Gates Glidden burs (sizes 1-6)
- Irrigating solution (Sodium Hypochlorite).
- An irrigating syringe 3ml and irrigation needle G27 or 30
- A(3-Inch) metal ruler or Endo-Ring
- A File holder/sponge soaked with alcohol or irrigant
- Paper points.



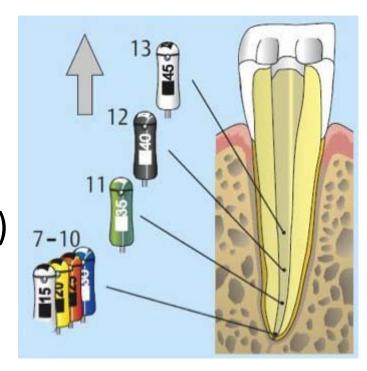
 Irrigation of pulp chamber with NaOCI (sodium hypochlorite)


 Bleaching effect of NaOCI helps in localizing/visualizing all root canals



- Some RULES:
- 1. A straight line access should be obtained.
- 2. The working length should be determined.
- Instruments should be <u>confined</u> to the root canal to prevent trauma to periapical tissues.
- 4. Files should be used with <u>a watch-winding</u> motion (quarter-turn) and withdrawn with a pull stroke.

- 5. Files should be used <u>in sequence</u> of sizes
- 6. Stainless Steel files larger than ISO size 10 should be Pre-Curved
- 7. Should always recapitulate.
- 8. <u>DO NOT force</u> the instrument if it <u>binds</u>.
- 9. <u>Check</u> instruments for <u>deformation</u> and discarded if present.
- 10. All instrumentation should be sterile.
- 11. The canal should be <u>wet</u> throughout the instrumentation process.


STEP BACK TECHNIQUE

- Is a technique whereby the canal is prepared with sequentially increasing sizes of files in an apical to coronal direction.
- Some modifications to this technique were introduced.

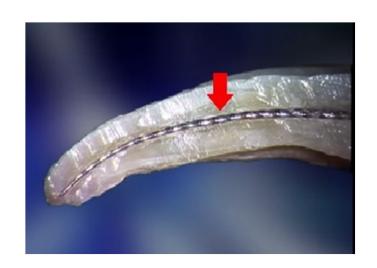
 Step Back technique consists of four phases

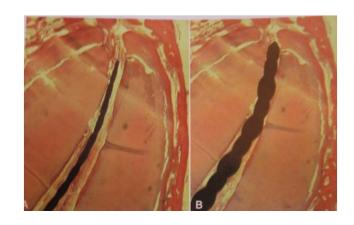
- Apical preparation phase
- Step back phase
- Coronal preparation (flaring) phase
- Refining/finishing phase

Apical preparation phase

 Consists of enlarging the apical third to ISO size 30 at least (except if sever<u>e apical curve</u>=

ISO 25)

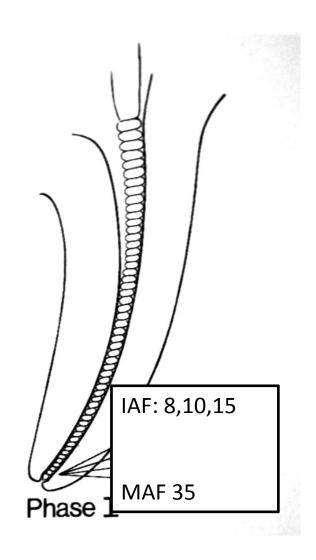

Work with files to WL.


Apical preparation Phase:

- 1. Flood the cavity with irrigant
- 2. Scouting and WL measurement
- Identification of initial binding file/initial apical file (IAF)_ Apical Gauging

<u>Initial Apical File</u> – the first file that binds (fits smugly, tight) at the working length

- IAF gives us information about original size of the canal



- 4. Insert the IAF to WL with "watch-winding" and then with pull strokes work against the canal walls (Stroke the file repeatedly in 0.5-2mm amplitude, in* & out motion) until it fits loosely to WL.
- 5. Irrigation with NaOCl
- 6. Place the next larger file (if IAF=15→ 20) to WL, with "watch-winding" and pull strokes (as in previous step), work against the canal walls <u>until it fits loosely</u> to WL.
- 7. Irrigation with NaOCl

^{*} Instruments must be Pre-curved and must be at WL when the cutting action is made (pull stroke)

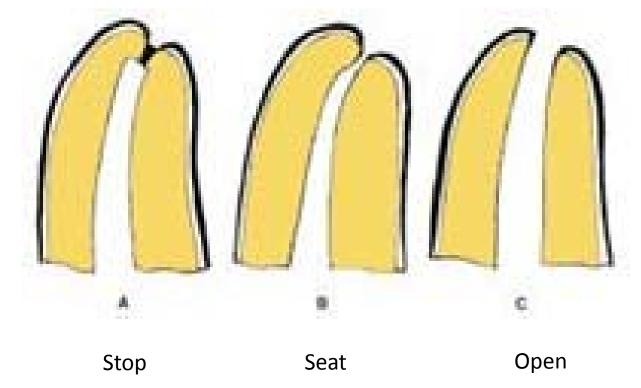
- 8. Recapitulation
- 9. Irrigation with NaOCl
- 10. Repeat steps 6-10 until the desired file size
 - = Master Apical File (MAF)

Circumferential Filing

• A Filing technique where the file is worked against the root canal wall during its cutting action (pull stroke). This is done against all walls equally.

Recapitulation

- Definition: The introduction of smaller files to full WL during root canal preparation to keep the apical area <u>clean and patent.</u>
- Helps prevent packing of dentinal debris and loosening these debris to be flushed out with irrigation.
- Helps in maintaining the WL and avoiding BLOCKAGE.

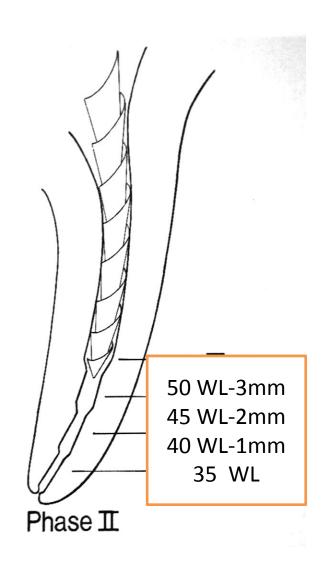

Master Apical File (MAF)

- MAF is the largest file used to WL in a completely prepared canal
- MAF size is recommended to be usually three sizes wider than IAF, minimum ISO 30
- Preparing canals to sizes smaller than ISO 30, irrigant doesn't penetrate properly to the apical part. The rule is: 3x larger than IAF; not less than ISO 30
- However, this should be balanced with root canal anatomy and type of tooth/root.

^{*}e.g. severe curvatures= 25, upper central incisor = 45 minimum.

Apical Stop

 Is the artificially produced ledge apically designed to prevent extrusion of the root filling material.


Apical Patency

- Apical Patency: a technique where the apical portion of the canal is maintained free of debris by recapitulation and by patency files.
- Patency file: a small file (< ISO size 15) taken through the apical foramen by maximum of 1-1.5mm.
- Minimal/no damage to periapical tissues, and no inoculation of microogranisms when used with NaOCl in the canal.


Step back phase:

- 11. Place a file one size larger than MAF into the canal 1mm short of the WL
- 12. Work against the walls until it is loose within the canal
- 13. Recapitulation to full length with MAF file to maintain patency and removal of dentin chips.
- 14. Copious irrigation before introducing next size instrument
- 15. REPEAT Until reaching middle third

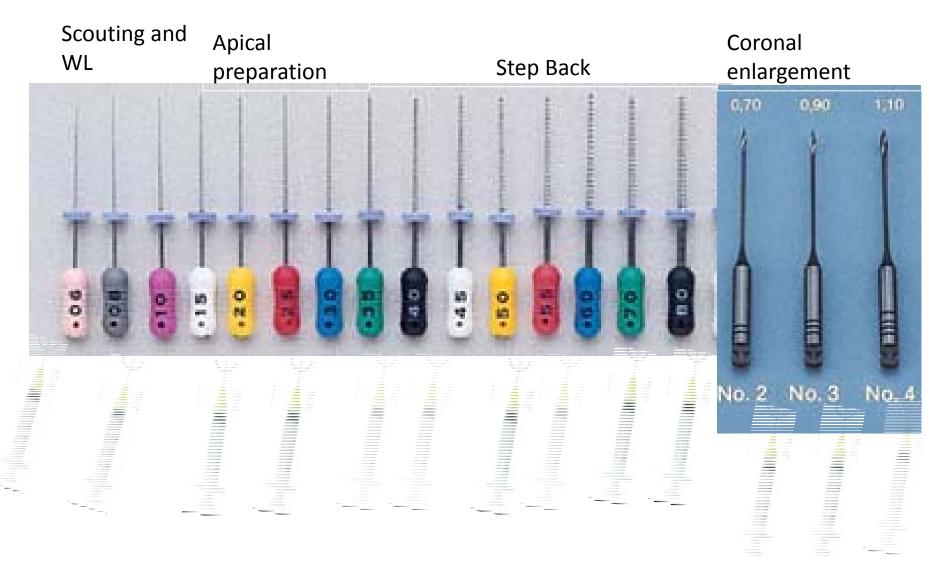
Coronal Flaring phase

- ☐ Start with GG size 2 to about ½ to ¾ of the canal length.
- ☐ Irrigate with NaOCl and Recapitulate
- ☐ Use GG size 3 in the coronal ⅓ of the canal length.
- ☐ Irrigate with NaOCl and Recapitulate

- ☐ Use G.G. size 4 no more than 3mm below the orifice of the canal.
- ☐ Irrigate with NaOCl and Recapitulate
- ☐ G.G. size 5 and 6 are used only to enlarge the orifice of canals in certain cases; e.g. long teeth or severely curved canals.

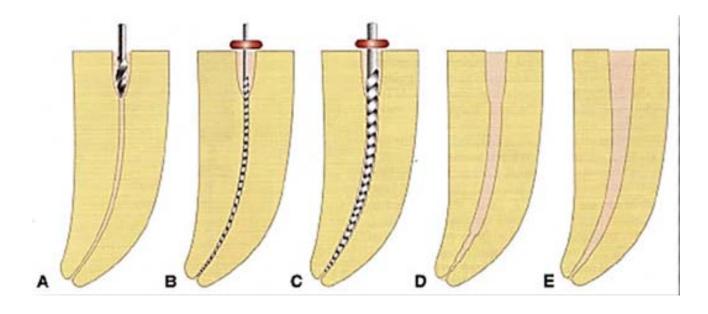
When using Gates Glidden Burs:

- 1. Do not force it into the canal to avoid perforation of the canal wall.
- 2. Do not force it because it may bind into the canal wall and break.
- 3. Try to lower the speed to control the movement of the G.G. and minimize perforation.


Refining phase:

 Return to a MAF → Smoothing a around the walls with vertical push-pull strokes

 Placing the file into the canal and pressing it laterally while withdrawing it along the path of insertion to scrape (plane) the wall.

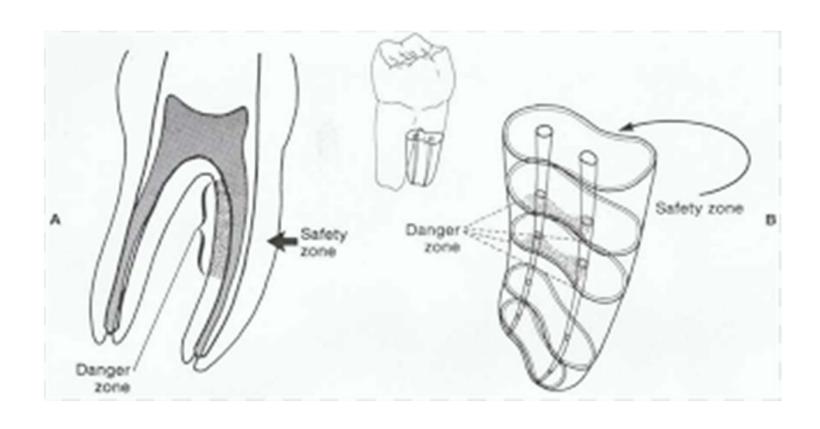

STEP-BACK TECHNIQUE

Recapitulation

Modifications to step back technique:

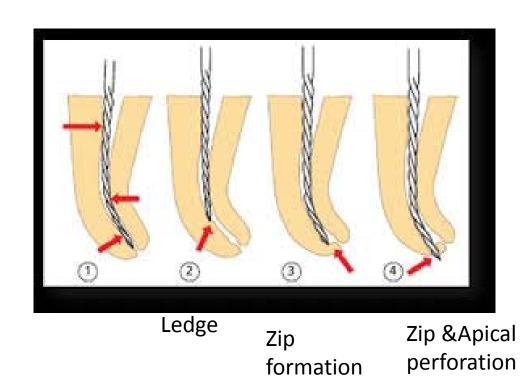
Coronal flaring first (coronal pre-enlargement)

- Modified Step-Back Technique
- Coronal pre-enlargement/flaring prior to apical preparation benefits:
 - Better tactile sense and control over the files
 - Closer estimation of the apical size (apical gauging)
 - Less pressure and easier use of files during apical preparation
 - Allows for better irrigation
 - Allows flushing of debris


Anti-Curvature Technique

A technique developed by Abu Rass in 1981

Depends on sound knowledge of root canal anatomy.


 It is a technique where filing is done mostly in the direction of the area with the most dentin bulk (Instead of circumferential filing)

Anti-Curvature Technique

Follow the rules to avoid procedural errors

