Fatty Acid and Triacylglycerol Metabolism 1 Mobilization of stored fats and oxidation of fatty acids **Lippincott's Chapter 16** CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COOH Fatty acid The pk_a of carboxyl group in fatty acid $$\approx 4.8$$ So, at physiological pH fatty acid exists as anion ω β α CH_3 -CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-COO Or CH_3 (CH₂)_n COO Triacylglycerol (TAG) or FAT is the major energy reserve in the body It is more efficient to store energy in the form of TAG ### Why FAT not Carbohydrates? - * More reduced: - 9 kcal per gram compared with - 4 kcal per gram of carbohydrates - * Hydrophobic: can be stored without H₂O carbohydrates are hydrophilic 1 gram carbohdrates: 2 grams H₂O #### Why FAT not Carbohydrates? (Continued) Average adult has 10 Kg of Fat How many calories? 90,000 kcal What is the mass of carbohydrates that produces 90,000 kcal? 90,000 / 4 = 22.5 Kg How much water with it? #### **FATTY ACID as FUELS** The major fuel used by tissues but Glucose is the major circulating Fuel | Fuel type | Amount used/
12 hours (kcal) | Amount in Fluids (kcal) | |-----------|---------------------------------|-------------------------| | FA | 540 | 3 | | Glucose | 280 | 80 | # Mobilization of stored fats The need for hormonal signal - Fat is stored in Adipose tissue - When needed a hormonal signal reaches the adipocyte. - Hydrolysis of TAG TAG + $$3 H_2O$$ \longrightarrow 3 FA + glycerol # Hormones that activate the Hormone Sensitive Lipase - Glucagon - Epinephrine - Norepinephrine - ACTH ### β Oxidation of Fatty Acids - Fatty Acids are transported to tissues bound to albumin - Degraded by oxidation at β carbon followed by cleavage of two carbon units ### Activation of Fatty Acids - Joining F.A with Coenzyme A - RCO~SCoA (Thioester bond) $$PP_i + H_2O \longrightarrow 2P_i$$ FA + HSCoA + ATP $$\longrightarrow$$ FA~CoA + AMP + 2 P_i AMP + ATP \longrightarrow ADP + ADP #### Activation of Fatty Acids (cont.) - ATP conversion to AMP + 2 P_i is equivalent to hydrolysis of 2 ATP to 2ADP - Enzyme: thiokinase (Acyl CoA Synthetase) - Location: outer mitochondrial membrane - mitochondrial matrix (for short and medium chain FA) ## Transport of long chain Acyl CoA across inner mitochondrial membrane - Inner mitochondrial membrane is impermeable to Acyl CoA - Carrier system is required (Carnitine Shuttle) - It consists of: - Carrier molecule - Two enzymes - Membrane transport protein