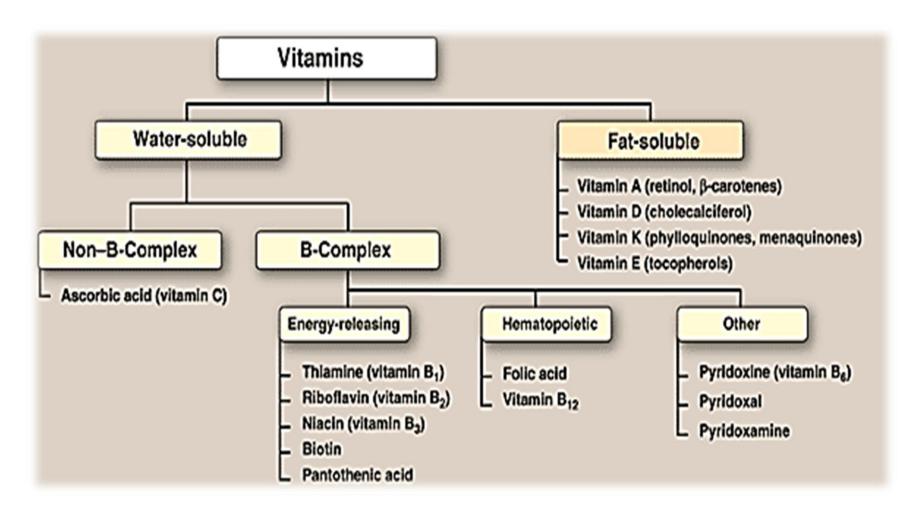
Vitamins

Nafith Abu Tarboush, DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush


Vitamins

- Organic compounds required by an organism in tiny amounts as a vital nutrient
- Cannot be synthesized in sufficient quantities, & must be obtained from the diet
- ❖ The term is <u>conditional both on the circumstances & on the particular organism</u> (ascorbic acid, humans, other animals) (vitamin D, human diet)
- Thirteen vitamins are universally recognized at present
- Vitamers are compounds that are convertible to the active form of the vitamin in the body

Vitamins

- Vitamins have diverse biochemical functions:
 - Hormone-like functions (regulators): regulators of mineral metabolism (e.g., vitamin D), or regulators of cell & tissue growth & differentiation (e.g., vitamin A)
 - ❖ Anti-oxidants (e.g., vitamins E & C)
 - Precursors for enzyme cofactors (vitamin B subclasses)

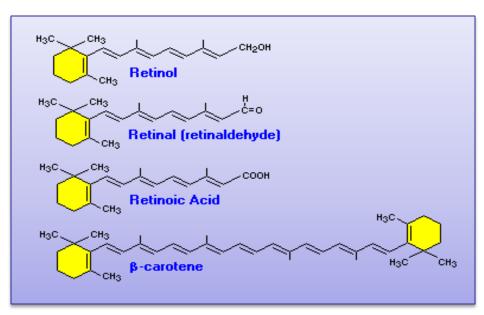
Classification

Water soluble vitamins

Vitamin	Coenzyme	Consequences of deficiency
Thiamine (B ₁)	TPP	
Riboflavin (B2)	FAD	Angular stomatitis (mouth lesions)
Nicotinic acid (niacin) (B³)	$NAD^{^{+}}$	
Pantothenic acid (B ₅)	CoA	
Pyridoxine (B6)	PLP	
Biotin (B7)		
Folic acid (B ₉)	TH4	Megaloblastic anemia
Cobalamin (B ₁₂)	5′- Deoxyadenosyl cobalamin	Megaloblastic anemia
Ascorbic acid (C)		Scurvy

Fat soluble vitamins

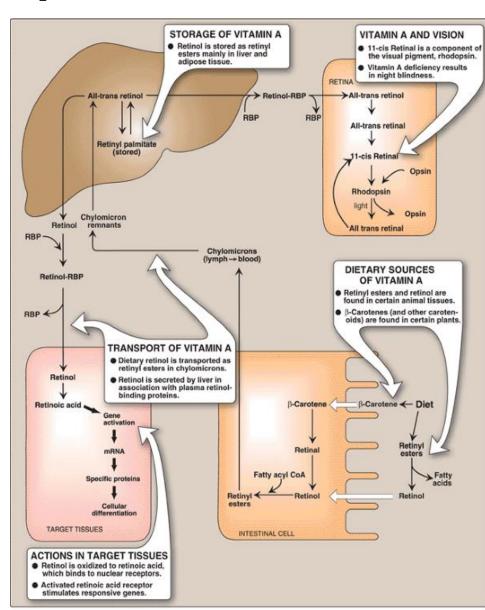
Vitamin	Main function	Deficiency
Α	Roles in vision, growth, reproduction	Night blindness, cornea damage
D	Regulation of Ca+2 & phosphate metabolism	Rickets (children), Osteomalacia (adults)
E	Antioxidant	RBCs fragility
K	Blood coagulation	Subdermal hemorrhaging


Vitamin A

- ✓ The <u>retinoids</u>, a family of molecules related to retinol (vitamin A), are <u>essential for vision</u>, reproduction, growth, & <u>maintenance of epithelial tissues</u>
- ✓ Retinoic acid, mediates most of the actions of the retinoids, except for vision and spermatogenesis

Retinoic acid

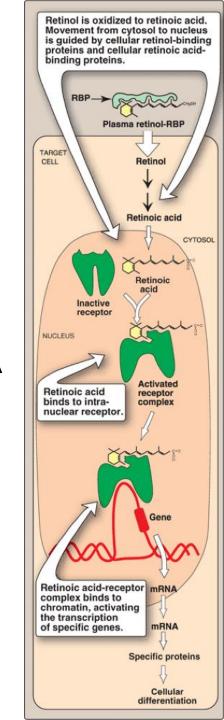
Vitamin A - structure


- ✓ Retinol: a primary alcohol, unsaturated side chain
- ✓ Retinal: an <u>aldehyde</u>, derived by oxidation of retinol, retinal and retinol are inter-convertible

- ✓ Retinoic acid: an acid, derived by oxidation of retinal, <u>cannot be</u> reduced in the body
- β-Carotene: oxidatively cleaved in the intestines to yield 2 molecules of retinal

Absorption & transport of vitamin A

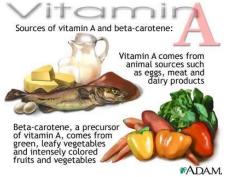
- ✓ Retinol esters, intestinal mucosa, retinol
- ✓ Carotenes, retinal, retinol
- ✓ Chylomicrons, lymphatic system, liver (storage)
- ✓ Release from the liver: retinol binds the plasma retinol-binding protein (RBP)
- ✓ Cellular RBP → nuclear receptors (steroids), RNA, proteins (keratin expression)



Functions of vitamin A

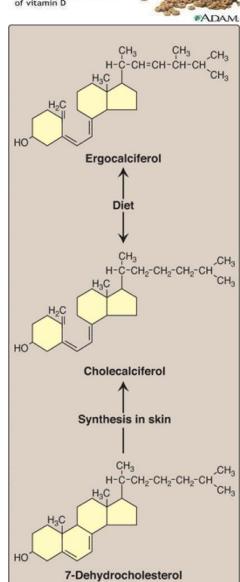
- √ Visual cycle: 11-cis retinal specifically binds the protein opsin (rhodopsin)
- ✓ Growth <u>(retinoic acid)</u>: Vitamin A deficiency results in a decreased (growth rate & bone development) <u>in children</u>
- ✓ Reproduction: Retinol and retinal (<u>not retinoic acid</u>) are essential for spermatogenesis in the male and preventing fetal resorption in the female
- ✓ Maintenance of epithelial cells (<u>retinoic acid</u>): Vitamin A is essential for normal differentiation of epithelial tissues & mucus secretion
- ✓ Animals given vitamin A only as retinoic acid from birth are <u>blind</u> and <u>sterile</u>

Mechanism of action of vitamin A


- ✓ Retinoic acid binds with high affinity to specific receptors (epithelial cells)
- ✓ The complex interacts with nuclear chromatin to stimulate retinoid-specific RNA synthesis
- ✓ Production of specific proteins that mediate several physiologic functions (keratin)

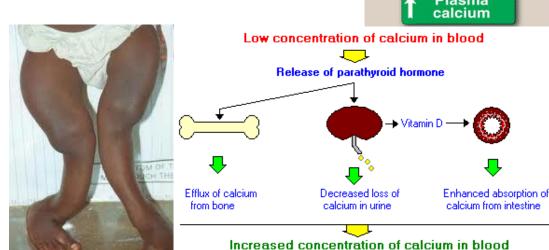
Sources & indications

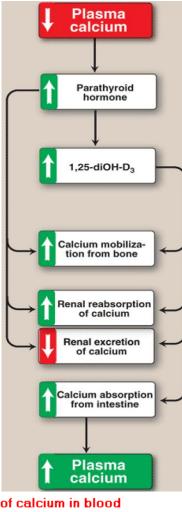
- Sources: excess cause <u>hypervitaminosis A</u>
- Clinical indications:
 - ✓ <u>Dietary deficiency</u>: mild (night blindness), prolonged (irreversible loss for some visual cells), severe (xerophthalmia)
 - ✓ Xerophthalmia: ulceration & dryness of conjunctiva & cornea, followed by scar & blindness (affecting over 500,000 children worldwide every year)
 - ✓ Acne and psoriasis: effectively treated with retinoic acid



Vitamin D

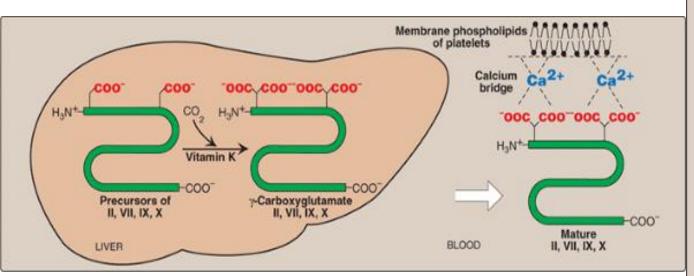
- ✓ Is a group of sterols that have a hormonelike function
- ✓ The active molecule, 1,25dihydroxycholecalciferol (1,25-diOH-D3),
 binds to intracellular receptor proteins
- ✓ The most prominent actions are to <u>regulate</u> the plasma levels of calcium & phosphorus
- ✓ Sources:
 - ✓ Diet: <u>Ergocalciferol (vitamin D₂, plants)</u>
 - ✓ Cholecalciferol (vitamin D₃, animals)
 - ✓ Endogenous: 7-Dehydrocholesterol is converted to cholecalciferol in the skin


Metabolism of vitamin D


- ✓ Vitamins D₂ and D₃ are not biologically active
- ✓ Converted by two sequential hydroxylation reactions to the active 1,25-diOH-D₃
 - ✓ The first occurs in liver (25-hydroxycholecalciferol)
 - ✓ The predominant form of vitamin D in plasma
 - ✓ The major storage form
 - ✓ The second occurs in kidneys (25-hydroxycholecalciferol 1-hydroxylase)
- ✓ Regulation of 25-hydroxycholecalciferol 1hydroxylase:
 - ✓ Increased directly by low plasma phosphate
 - ✓ Increased indirectly by low plasma calcium (PTH)
 - ✓ Decreased by excess 1,25-diOH-D3, the product of the reaction

Functions & indications

- ✓ The overall function is to maintain adequate plasma levels of calcium
 - ✓ 1) Increasing calcium uptake by intestines (the mechanism is typical of steroid hormones)
 - √ 2) Minimizing calcium loss by kidneys
 - √ 3) Stimulating resorption of bone when necessary
- ✓ Indications:
 - ✓ Nutritional rickets: rickets in children & osteomalacia in adults
 - ✓ Renal rickets (renal osteodystrophy): chronic renal failure
 - ✓ Hypoparathyroidism


Vitamin K

- ✓ Exists in several forms:
 - ✓ In plants: phylloquinone (vitamin K₁)
 - ✓ Intestinal bacterial flora: menaquinone (vitamin K₂)

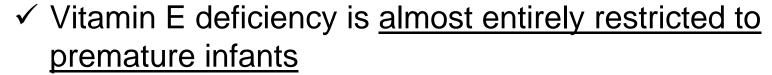
✓ The principal role: posttranslational modification of various blood clotting factors: hepatic synthesis of clotting factors

II (prothrombin), VII, IX, and X

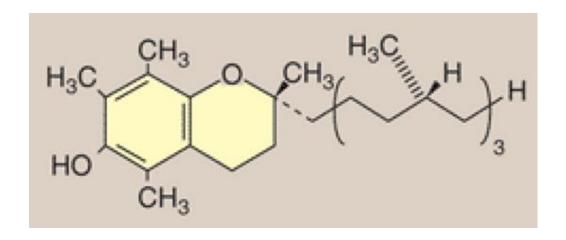
✓ Present in low concentration in milk

Precursors of Polypeptide clotting factors II, VII, IX, X CH₂ O CH, Glutamyl residue COO Vitamin K Warfarin Mature clotting factors II. VII. IX. X CH₂ O ?-Carboxyglutamyl (Gla) residue COO COO

Food sources of vitamin K include cab cauliflower, spinach and other green, leafy vegetables, as well as cereals



Vitamin K


- ✓ Clinical indications:
 - ✓ Deficiency of vitamin K: unusual (intestinal bacteria), antibiotics
 - ✓ Deficiency of vitamin K in the newborn (sterile intestines). Human milk (20%) of the need, so it is recommended that all newborns receive a single intramuscular dose of vitamin K as prophylaxis against hemorrhagic disease

Vitamin E

- √ 8 naturally occurring tocopherols
- √ α-tocopherol is the most active form
- ✓ The primary function is as an <u>antioxidant</u>

✓ When observed in adults, it is usually associated with defective lipid absorption or transport

Vitamin E is found in corn, nuts, olives, green, leafy vegetables, vegetable oils and wheat germ, but food alone cannot provide a beneficial amount of vitamin E, and supplements may be helpful

*ADAM